Time Series Analysis on London Mortality

A 618 Project

Egan McClave & Aijin Wang

April 23, 2019

Table of contents

- 1. Introduction
- 2. Exploratory Data Analysis
- 3. Model Analysis
- 4. Summary

Introduction

Introduction

Dataset

Various time series from London from 2002 to 2006

- Ozone
- Relative Humidity
- Temperature
- Number of Deaths

Research Question

Investigation of the associations between environmental factors and human mortality

Exploratory Data Analysis

Overall Series

Figure 1: Individual Series for London (2002 - 2007)

what's that weird spike?

Pairs Plot

Figure 2: Pairs Plot for All Variables

Decomposed Seasonality Components

Figure 3: Decomposed Seasonality Components for London (2002-2007)

ACF/CCF Plots

Figure 4: ACF/CCF Plots

PACF/PCCF Plots

Figure 5: PACF/PCCF Plots

Variables under Consideration

Independent Variables

- Time
- Mean Centered Temperature
- (Mean Centered Temperature)²
- Ozone levels
- Relative Humidity

Response Variable

• Number of Deaths

Model Analysis

• Types of Models

- Types of Models
 - Time series regression

- Types of Models
 - Time series regression
 - VAR model

- Types of Models
 - Time series regression
 - $\bullet \ \ \mathsf{VAR} \ \mathsf{model} \leftarrow \mathsf{primary} \ \mathsf{model} \ \mathsf{for} \ \mathsf{this} \ \mathsf{presentation}$

- Types of Models
 - Time series regression
 - VAR model
 - NNETAR model

- Types of Models
 - Time series regression
 - VAR model
 - NNETAR model
- How do we evaluate them?

- Types of Models
 - Time series regression
 - VAR model
 - NNETAR model
- How do we evaluate them?
 - Original data is 1826 observations long

- Types of Models
 - Time series regression
 - VAR model
 - NNETAR model
- How do we evaluate them?
 - Original data is 1826 observations long
 - Training data is 1461 observations (2002 2005)

- Types of Models
 - Time series regression
 - VAR model
 - NNETAR model
- How do we evaluate them?
 - Original data is 1826 observations long
 - Training data is 1461 observations (2002 2005)
 - Testing/validation data is 365 observations (all of 2006)

Vector ARMA Model - Model Fitting

Parameter Selection:

- VARselect() $\rightarrow p = 4$
- intutition about series \rightarrow season = 365
- \Rightarrow fit <- VAR(# Deaths, p=4, season=365, type='none')

Vector ARMA Model - Evaluating Fit 1

Figure 6: Fitted Values vs Original Series

Vector AR Model - Evaluating Fit 2

Figure 7: Residuals for Individual Series

Vector AR Model - Model Forecasting 1

Figure 8: Forecasting Individual Series

Vector AR Model - Model Forecasting 2

Figure 9: Forecasting Response Series

Vector AR Model - Model Forecasting 3

Figure 10: Forecasting Response Series (season=NULL)

Vector AR Model - Model Inference

	Num Deaths			
Coefficient	Estimate	Std. Error	t value	Pr(> t)
Ozone lag 1	0.045	0.040	1.122	0.262
Temperature lag 1	0.516	0.245	2.108	0.035
Relative Humidity lag 1	0.048	0.042	1.152	0.250
Num Deaths lag 1	0.375	0.028	13.222	0.000
Ozone lag 2	0.061	0.049	1.244	0.214
Temperature lag 2	-0.345	0.340	-1.015	0.310
Relative Humidity lag 2	0.068	0.045	1.489	0.137
Num Deaths lag 2	0.182	0.030	6.014	0.000
Ozone lag 3	-0.039	0.049	-0.790	0.430
Temperature lag 3	-0.791	0.338	-2.340	0.019
Relative Humidity lag 3	-0.026	0.046	-0.577	0.564
Num Deaths lag 3	0.158	0.030	5.237	0.000
Ozone lag 4	0.054	0.040	1.353	0.176
Temperature lag 4	0.482	0.246	1.958	0.050
Relative Humidity lag 4	0.165	0.042	3.967	0.000
Num Deaths lag 4	0.151	0.028	5.304	0.000

Table 1: VAR(4) Summary for Number of Deaths

Summary

Summary

- Temperature and Number of Deaths move in phase
- There is a non-linear relationship between Temperature and Number of Deaths
- Generalizability of the fitted model is good
 - Captures seasonality
 - Captures downward linear trend
 - Captures daily volatility

Questions?

Back up Slides

Time Series Regression Model - Model Fitting

```
fit <- forecast::auto.arima(Num Deaths, xreg=...,
seasonal=T)</pre>
```

Time Series Regression Model - Evaluating Fit 1

Figure 11: Visualizing Model Fit

Time Series Regression Model - Evaluating Fit 2

Figure 12: Visualizing Model Residuals

Time Series Regression Model - Model Forecasting

Figure 13: Visualizing Forecasted Series

Neural Network Time Series Model - Model Fitting

```
fit <- forecast::nnetar(Num Deaths, xreg=..., seasonal=T)</pre>
```

Neural Network Time Series Model - Evaluating Fit 1

Figure 14: Visualizing Model Fit

Neural Network Time Series Model - Evaluating Fit 2

Figure 15: Visualizing Model Residuals

Neural Network Time Series Model - Model Forecasting

Figure 16: Visualizing Forecasted Series