Time Series Analysis on London Mortality

A 618 Project

Egan McClave \& Aijin Wang
April 23, 2019

Table of contents

1. Introduction
2. Exploratory Data Analysis
3. Model Analysis
4. Summary

Introduction

Introduction

Dataset

Various time series from London from 2002 to 2006

- Ozone
- Relative Humidity
- Temperature
- Number of Deaths

Research Question

Investigation of the associations between environmental factors and human mortality

Exploratory Data Analysis

Overall Series

Figure 1: Individual Series for London (2002-2007)
what's that weird spike?

Pairs Plot

Figure 2: Pairs Plot for All Variables

Decomposed Seasonality Components

Figure 3: Decomposed Seasonality Components for London (2002-2007)

ACF/CCF Plots

Figure 4: ACF/CCF Plots

PACF/PCCF Plots

Figure 5: PACF/PCCF Plots

Variables under Consideration

Independent Variables

- Time
- Mean Centered Temperature
- (Mean Centered Temperature) ${ }^{2}$
- Ozone levels
- Relative Humidity

Response Variable

- Number of Deaths

Model Analysis

Overview

- Types of Models

Overview

- Types of Models
- Time series regression

Overview

- Types of Models
- Time series regression
- VAR model

Overview

- Types of Models
- Time series regression
- VAR model \leftarrow primary model for this presentation

Overview

- Types of Models
- Time series regression
- VAR model
- NNETAR model

Overview

- Types of Models
- Time series regression
- VAR model
- NNETAR model
- How do we evaluate them?

Overview

- Types of Models
- Time series regression
- VAR model
- NNETAR model
- How do we evaluate them?
- Original data is 1826 observations long

Overview

- Types of Models
- Time series regression
- VAR model
- NNETAR model
- How do we evaluate them?
- Original data is 1826 observations long
- Training data is 1461 observations (2002-2005)

Overview

- Types of Models
- Time series regression
- VAR model
- NNETAR model
- How do we evaluate them?
- Original data is 1826 observations long
- Training data is 1461 observations (2002-2005)
- Testing/validation data is 365 observations (all of 2006)

Vector ARMA Model - Model Fitting

Parameter Selection:

- VARselect() $\rightarrow p=4$
- intutition about series \rightarrow season $=365$
\Rightarrow fit <- VAR(\# Deaths, $p=4$, season=365, type='none')

Vector ARMA Model - Evaluating Fit 1

Figure 6: Fitted Values vs Original Series

Vector AR Model - Evaluating Fit 2

Figure 7: Residuals for Individual Series

Vector AR Model - Model Forecasting 1

Figure 8: Forecasting Individual Series

Vector AR Model - Model Forecasting 2

Figure 9: Forecasting Response Series

Vector AR Model - Model Forecasting 3

Figure 10: Forecasting Response Series (season=NULL)

Vector AR Model - Model Inference

	Num Deaths			
Coefficient	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
Ozone lag 1	0.045	0.040	1.122	0.262
Temperature lag 1	0.516	0.245	2.108	0.035
Relative Humidity lag 1	0.048	0.042	1.152	0.250
Num Deaths lag 1	0.375	0.028	13.222	0.000
Ozone lag 2	0.061	0.049	1.244	0.214
Temperature lag 2	-0.345	0.340	-1.015	0.310
Relative Humidity lag 2	0.068	0.045	1.489	0.137
Num Deaths lag 2	0.182	0.030	6.014	0.000
Ozone lag 3	-0.039	0.049	-0.790	0.430
Temperature lag 3	-0.791	0.338	-2.340	0.019
Relative Humidity lag 3	-0.026	0.046	-0.577	0.564
Num Deaths lag 3	0.158	0.030	5.237	0.000
Ozone lag 4	0.054	0.040	1.353	0.176
Temperature lag 4	0.482	0.246	1.958	0.050
Relative Humidity lag 4	0.165	0.042	3.967	0.000
Num Deaths lag 4	0.151	0.028	5.304	0.000

Table 1: VAR(4) Summary for Number of Deaths

Summary

Summary

- Temperature and Number of Deaths move in phase
- There is a non-linear relationship between Temperature and Number of Deaths
- Generalizability of the fitted model is good
- Captures seasonality
- Captures downward linear trend
- Captures daily volatility

Questions?

Back up Slides

Time Series Regression Model - Model Fitting

fit <- forecast: auto.arima(Num Deaths, xreg=..., seasonal=T)

Time Series Regression Model - Evaluating Fit 1

Figure 11: Visualizing Model Fit

Time Series Regression Model - Evaluating Fit 2

Figure 12: Visualizing Model Residuals

Time Series Regression Model - Model Forecasting

Figure 13: Visualizing Forecasted Series

Neural Network Time Series Model - Model Fitting

fit <- forecast::nnetar(Num Deaths, xreg=..., seasonal=T)

Neural Network Time Series Model - Evaluating Fit 1

Figure 14: Visualizing Model Fit

Neural Network Time Series Model - Evaluating Fit 2

Figure 15: Visualizing Model Residuals

Neural Network Time Series Model - Model Forecasting

Figure 16: Visualizing Forecasted Series

