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Abstract

The purpose of this report is to examine and understand the relationship between the number of
deaths and environmental variables such as particulate matter and weather variables. We analyzed 4
time series with 1826 observations per each series. We fit several models (Time Series Regression, Vector
autoregression, Neural Network rutoregression) in an attempt to estimate the health risks associated
with the given environmental variables. Based on these different models, Temperature appears to have
a very influential relationship on understanding the number of deaths.

1 Introduction

Understanding mortality rates is an essential part of environmental epidemiology. Individually, ambient
temperature/humidity and air pollution have been important determinants of mortality. It is of interest
to us to investigate the associations between exposures such as air pollution, weather variables and human
health. In this paper, we attempt to estimate the health risks associated with exposure to particulate matter
(PM) and weather variables. Some advanced statistical models are necessary to study the possibly non-linear
relationship among these variables of interest.

The data was originally introduced in the paper Time Series Regression Studies in Environmental Epi-
demiology published in International Journal of Epidemiology. The paper can be found here. The aim of
the paper was to explore the basic modeling techniques that were appropriate for this problem. The data
can be accessed from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780998/. We will conduct our
own analysis for this dataset and compare said results to the existing ones from the academic paper.

2 Methods

2.1 Data Description

The dataset contains daily observations of Ozone, O3 (µg/m3), Temperature (◦C), Relative Humidity
(%) and number of deaths from January 2002 to December 2006. A brief quantitative summary of the data
is described in Table 1.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Ozone 1.18 21.09 34.92 34.77 46.73 119.25

Temperature -1.40 7.51 11.47 11.72 16.20 28.17
Relative Humidity 31.23 58.69 69.61 69.10 80.36 98.86

Num Deaths 99.00 135.00 148.00 149.51 162.00 280.00

Table 1: Summary Statistics for Individual Time Series

2.2 Exploratory Data Analysis

2.2.1 Univariate EDA

Before fitting time series models, we first want to understand the possible relationships among variables
to get a better understanding about the structure of the data.

Figure 1 shows the individual time series plots for the dataset. From Figure 1 (a), we see that all three
independent variables and the response variables have constant mean and variance. For number of deaths,
there is an observation in 2003 that is significantly higher than the rest of the data. News reported that in
August 3, 2003, Britain has recorded the highest temperature in 130 years, and the unusual weather might
have led to the increasing number of deaths. Furthermore, the plots also suggests some seasonality effect
in the data, since the plots show periodic patterns. Therefore, we explore the patterns by looking into the
decomposed time series plots.
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Figure 1 (b) displays the decomposed seasonality components for each series. As suggested in the overall
series plot, we see an approximate yearly seasonality effect for all the variables. Specifically, Ozone and
Temperature move in phase with one another as do Num Deaths and Relative Humidity with each other.
However, these two pairings are out of phase with the other pair (they all have the same frequency ≈365
but change over time differently). We will consider seasonality in the model fitting.
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Figure 1: Visualizing Individual Time Series for London (2002 - 2007)

2.2.2 Multivariate EDA
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Figure 2: Pairs Plot of all Variables

Figure 2 shows the pairwise scatterplots in the dataset. Both Ozone and Relative Humidity don’t show
strong correlation with Num Deaths, but there is a weak quadratic relationship between Temperature and
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Num Deaths. This suggests that some variable transformations may be useful in order to account for the
relationship.
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(a) ACF/CCF Plots of Individual Series
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(b) PACF/PCCF Plots of Individual Series

Figure 3: Auto-Correlation Plots of Individual Series

Figure 3 illustrate the ACF/CCF and PACF/PCCF of the individual series up to a full 365 days of lag. The ACF/CCF plots in Figure 3
(a) that ACF values depend on the lag and have periodic patterns. Large number of the values are also outside the confidence level. This
further proves that the original series is not stationary and have seasonality effects.

There are four PACF plots on the diagonal as shown in Figure 3(b). For all four variables, the plots have tails off, meaning that some AR
models are appropriate for the dataset. Out of all the PCCF plots, only the one between number of deaths and temperature has high PCCF
values for various lags. This is evidence to prove that there might be some relationship between the two variables.
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2.3 Variable Transformation

Based on the exploratory data analysis in subsection 2.2, we discovered that there is potentially a
quadratic relationship between Temperature and Num Deaths. Therefore, we will include a quadratic trans-
formation of Temperature in the modeling. Furthermore, we use the mean adjusted version of Temperature
instead of the original version to ensure the calculations are more stable. In addition, we also engineer the
variables Day of Week and Day of Month from the dates provided.

In summary, below are the variables that we use for the model building after transformation:

• Time

• Ozone Levels

• Relative Humidity

• Adjusted Temperature

• Adjusted Temperature2

• Num Deaths

• Day of Week

• Day of Month

2.4 Model Identification

Based on the above analysis and the research goal of the project, we will be fitting three types of models,
which are:

• Time Series Regression

• Vector Autoregression

• Neural Network Autoregression

In this section, we will discuss the steps that we take to fit each model.

2.4.1 Time Series Regression

Manual Identification

We first fit a simple linear regression model using OLS with all the variables mentioned above as exogenous
variables. The residual plot, Q-Q plot, ACF and PACF of the residuals are displayed in Figure 4 and Figure 5.
The residuals in Figure 4(a) are not randomly distributed, and show some periodic patterns. Though the
plot has mean centered around zero, it also shows heteroskedasticity. There are also four observations that
have relatively high values. The Q-Q plot shows a similar result. The points show a bell curve, with the end
of the plot being heavily tailed. These are evidence implying that the simple OLS model may not be a good
fit for the dataset.

The ACF and PACF plots prove that the residuals are not white noise, but instead have some AR and
MA behavior. Upon further examination of the plots, we identify an ARMA(2,8) model for the residuals, and
refit time series regression with all the exogenous variables assuming that the residuals follow ARMA with
the orders (2,8) found in the previous step.
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Figure 4: Visualizing Residuals
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Figure 5: ACF/PACF Plot of Residuals

auto.arima
Another approach that can help identify the order of residuals is the function auto.arima in R. Since we
already know that the residuals are not white noise, we will use auto.arima, which returns the best ARIMA
model based on information criteria(AIC or BIC value) to get the order for the residuals. We will also be
accounting for the effects of exogenous variables, same as the previous section.
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model <- auto.arima(‘Num Deaths’, seasonal=T, xreg=..., stepwise=F, approx=F, type=‘none’)

After running auto.arima, we identidy an ARMA(1,1) model for the residuals. Using the same process
as above, we then refit time series regression all the exogenous variables, but assuming that the residuals
follow ARMA with the orders (1,1).

The specific model fitting, validation and inference will be expanded upon in detail in subsection 3.1. We
will compare the results between ARMA(1,1) and ARMA(2,8) and identify a better model.

2.4.2 Vector Autoregression

The parameter selection for VAR models is straightforward and requires only the lag order p for the
model. Based on the EDA in subsection 2.2 we know there is a seasonality component to the data at ≈365
days. We will also be providing several exogenous variables as mentioned above. For this reason we will be
using the VARselect() function (from the vars package) as shown below to determine the lag order for two
different VAR models (season=NULL and season=365). The lag order parameters for the different criteria
are displayed in table Table 2.

selection <- VARselect(‘Num Deaths’, season=..., exogen=..., type=‘none’)

AIC(n) HQ(n) SC(n) FPE(n)
season=NULL 6 3 3 6

season=365 8 3 2 6

Table 2: VARselect() Order Selection for Different Models

Table 2 contains the information criteria and final prediction error for the two different models. Based
on the results of this table, the two models will be a VAR(p = 42, season = NULL) and VAR(p = 42, season =
365). The specific model fitting, validation and inference will be expanded upon in detail in subsection 3.2.

2.4.3 Neural Network Autoregression

Lastly, our third model is a Neural Network Autoregression (NNAR) utilizing the nnetar() function
from the forecast package as described below.

nn fit <- nnetar(‘Num Deaths’, xreg=...)

This is relatively straightforward and requires little to no overhead with implementation other than
specifying the exogenous variables with the xreg argument. The specific model fitting, validation and
inference will be expanded upon in detail in subsection 3.3.

3 Results

We split the data into training and testing sets, and use model trained on the training set to predict
number of deaths with all the exogenous variables on the test set. The training set contains data from year
2002 to 2006, and the test set contains data from 2006 to 2007. All the models below are only fitted using
the training set.

7



3.1 Time Series Regression

Model Fitting

After the initial model identification, we narrow down to two candidates for the residual models: ARMA(1,1)
(from manual identification) and ARMA(2,8) (from auto.arima). Assuming that the residuals for OLS follow
the ARMA model with order (p,q), Figure 6 and Figure 7 show the fitted values and the new residual plots
for the refitted time series regression models, corresponding to ARMA(1,1) and ARMA(2,8) respectively.
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Figure 6: Visualizing ARIMA Fit
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Figure 7: Visualizing auto.arima Fit

The fitted values for both models fit the original data well and they both capture the trend and seasonality
of the data. Similarly, the residual plots for both models look good. The residual values are randomly
distributed and centered around zero. Both plots show constant variance and have no apparent patterns.

Model Validation

Figure 8 and Figure 9 show the QQ plots and the ACF/PACF plots for the refitted time series regression
models, corresponding to ARMA(1,1) and ARMA(2,8) respetively.
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Figure 8: Visualizing ARIMA Residuals
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Figure 9: Visualizing auto.arima Residuals

For both QQ plots, the points follow the normal QQ line, with the upper side having a slightly heavy tail.
Unlike OLS, majority of the ACF and PACF values are within the confidence bands, meaning these values
do not depend on lag. From all plots above, we can conclude that the new residuals for both ARMA(2,8)
and ARMA(1,1) model are white noise.
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With all the evidence, we can say that both models do a equally good job in model fitting. However,
here we will pick the results produced by auto.arima (residuals follow ARMA(1,1)) to proceed due to the
simplicity of the model.

Model Forecasting

Figure 10 shows the forecast results for auto.arima. From the plot, we see that the point estimate do
well only in the beginning of the prediction period. The model does capture the downward trend of the
series, the daily volatility, and predicts some level of seasonality, but the predicted cycle is not in sync with
the original series. The 95% confidence interval are fairly wide, and share the same patterns as the point
estimate.
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Figure 10: Visualizing auto.arima Forecasts

Model Inference

Table 3 shows the coefficient and standard error for each variable in the time series regression. From
the table, we see that Adjusted Temperature has a high positive coefficient. This means that there is a
positive correlation between temperature and number of deaths: holding all the other variables fixed, when
the temperature gets higher, number of deaths also increases. Ozone levels have a negative correlation with
number of deaths and relative humidity has a positive correlation, though the results for both variables are
insignificant within 95% confidence interval (because the interval includes zero). Other variables that have
significant coefficients are ar1, ma1 and (Adjusted Temperature)2.
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Estimate Std. Error
ar 1 0.99 0.00

ma 1 -0.78 0.02
intercept 13289.39 10751.68

Trend -6.56 5.37
Adjusted Temperature 1.41 0.17

(Adjusted Temperature)2 0.12 0.02
Ozone -0.04 0.03

Relative Humidity 0.06 0.04
Day of Week 0.18 0.17

Day of Month -0.01 0.05

Table 3: Time Series Estimated Coefficients

3.2 Vector Autoregression
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Figure 11: Visualizing VAR(p=3, season=NULL)
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Figure 12: Visualizing VAR(p=2, season=365)

Figure 11 and Figure 12 visualize the fitted values and the residuals for the VAR(p=3, season=NULL)
and VAR(p=2, season=365) models. Between the two sets of figures the plots appear nearly identical with
the second model slightly capturing the variability of the individual series more than the first model. This
can be identified in the left hand plots where the fitted values in blue more closely follow the original data
specifically in the Ozone, Relative Humidity and Num Deaths series for the second model. On the right
hand side, the residuals are mostly centered around the line y = 0 and maintain a constant variance over
time except for the notable spike in 2003 and for the squared adjusted temperature series as a whole.
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(a) VAR(p=3, season=NULL)
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Figure 13: ACF/CCF Plots

Figure 13 features the ACF/CCF plots for the VAR(p=3, season=NULL) and VAR(p=2, season=365) models. From this extensive grid of
plots we can see that the residuals from the two models appear to come from a white noise process as indicated by the lack of statistically
signficant non-zero auto/cross-correlations. It is also important to note that some of the ACF plots for the VAR(p=2, season=365) model have
a slight statistically significant value at lag 365 which suggests the data still needs some further manipulation.
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(b) VAR(p=2, season=365)

Figure 14: Visualizing Forecasting

Figure 14 depicts the predictions for the testing data with the VAR(p=3, season=NULL) and VAR(p=2,
season=365). Figure 14 (a) has an overall poor fit with the point estimates but the 95% confidence interval
mostly contains the value from the testing data. These predictions also capture the decreasing trend that
the original series displays. Figure 14 (b) has a much better fit and the point estimates follow the observed
testing data very well as well as the 95% confidence intervals capturing the test data within its bounds.
Additionally, the point estimates and confidence intervals exhibit the same seasonal and daily volatility that
the original data exhibits. This difference in quality of the fits is likely attributed to the seasonal parameter.
The inclusion of this parameter provides the second model with an additional 365 estimated coefficients. For
this reason we will be examining the more parsimonious model, VAR(p=3, season=NULL) since we are more
interested in the inference capabilities of our model. It is worth noting how excellent the fit for the second
model is and it should be kept in mind for further analysis.

Model Inference

Table 4 displays the summary of the estimated coefficients of the VAR(p=3, season=NULL) model when
regressing onto Num Deaths at time t. Few of the estimated coefficients are statistically significant (using the
unadjusted p-values) and even fewer have estimated coefficients that are not near 0. The most important
coefficients to note here (given the current variables in the model) are the lagged coefficients for Adjusted

Temperature and the lagged coefficients for Num Deaths. These coefficient estimates are fairly large which
suggest that they have some relationship with Num Deaths in the current time period. Based on the signage
of these coefficients an increase in Adjusted Temperature at (t− 1) has an increased number of deaths at
time t and an increase in Adjusted Temperature at (t−2) and (t−3) have a decreased number of deaths at
time t. Similarily, an increase in Num Deaths at all lags 1, 2, 3 leads to an increase in the number of deaths
at time t.

3.3 Neural Network Autoregression

Model Fitting
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Estimate Std. Error t value Pr(> |t|)
Ozone lag 1 0.043 0.035 1.229 2.19E-01

Adjusted Temperature lag 1 0.466 0.222 2.102 3.57E-02
(Adjusted Temperature)2 lag 1 0.102 0.020 5.028 5.58E-07

Relative Humidity lag 1 0.016 0.039 0.402 6.88E-01
Num Deaths lag 1 0.280 0.026 10.600 2.48E-25

Ozone lag 2 0.074 0.043 1.726 8.46E-02
Adjusted Temperature lag 2 -0.737 0.306 -2.408 1.62E-02

(Adjusted Temperature)2 lag 2 -0.009 0.027 -0.343 7.32E-01
Relative Humidity lag 2 0.035 0.042 0.829 4.07E-01

Num Deaths lag 2 0.185 0.027 6.858 1.03E-11
Ozone lag 3 -0.055 0.035 -1.559 1.19E-01

Adjusted Temperature lag 3 -0.636 0.225 -2.823 4.82E-03
(Adjusted Temperature)2 lag 3 -0.023 0.020 -1.148 2.51E-01

Relative Humidity lag 3 -0.053 0.040 -1.332 1.83E-01
Num Deaths lag 3 0.169 0.026 6.601 5.74E-11

Trend 0.026 0.003 10.256 7.19E-24
Day of Week 0.028 0.192 0.144 8.86E-01

Day of Month -0.023 0.043 -0.537 5.92E-01

Table 4: Num Deaths Coefficients from VAR(3)
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Figure 15: Visualizing NNAR Fit

Figure 15 illustrates the fitted values and residuals for the NNAR model described earlier. The model
resulting from nnetar() is NNAR(10, 11). Figure 15 (a) shows that the fitted values follow the original
training data quite well. Figure 15 (b) shows that the residuals are almost evenly centered around y = 0 and
maintain a constant variance throughout time. Thus, this model is a good fit to the training dataset.

Model Validation
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Figure 16: Visualizing NNAR Residuals

Figure 16 displays the NNAR model residuals in more detail. Figure 16 (a) shows that the residuals
approximately follow a normal distribution based on the QQ plot with only a slight deviation in the left
tail. Figure 16 (b) shows the ACF/PACF plot which illustrates that the remaining residuals approximately
follow a white noise distribution. Thus, supporting that this model does well in the training aspect.

Model Prediction

Forecasting Ahead:
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Figure 17: Visualizing NNAR Forecasts

Figure 17 displays the predictions for the testing data using the NNAR model. The point estimates do
fairly well with prediction except for a period of time roughly half way through the testing year. The 95%
confidence interval also manages to capture most of the data within its bounds, with the exception of the
same period of time as the point estimations. It is also important to note that the model manages to capture
the overall seasonal trend and daily volatility that the original data displays. Thus, the generalizability of
the model appear adequate but not great.
Simulated Data:
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Figure 18: Comparing Original Series to Simulated Data

Unlike the other models, the NNAR model has the capability to easily simulate data. Figure 18 displays
both just a few simulations and the original observed series in full. Based on these two plots, it is sound to
say that the observed data might come from the distribution the Neural Network black box is generating.
This is more evidence that the generalizability of the model is quite good.

4 Discussion

In this analysis, we fit three model for the time series data to predict the number of deaths, using time,
ozone levels, relative humidity, temperature and temperature2. The three models that we fit are Time Series
Regression, Vector Autoregression and Neural Network Autoregression.

For Time Series Regression, we first fit a linear regression using OLS, and fit two ARIMA models for the
residuals, using ACF/PACF plots and auto.arima respectively. We then refit the regression model, assuming
that the residuals follow the ARIMA models, and examine the fit of the new model. When comparing the
results from the two approaches, we see that they do an equally good job in model fitting, residual plots, Q-Q
plots, and ACF/PACF plots. Therefore, we choose the model with lower order of MA and AR. The final
ARIMA model shows a moderately good forecasting behaviour, capturing the overall trend, daily volatility,
but it fails to predict the correct seasonality. This model also showed that there is some directly proportional
relationship between temperature and number of deaths and an inversely proportional relationship between
time and number of deaths.

For Vector Autoregression, we examined two models based on the seasonality components from the
EDA. They both had approximately the same fit behaviour but drastically different forecasting/prediction
behaviour. Thus, we choose the less complicated model in favor of explanation. The simplier model illustrated
that there is some lagged effect with temperature onto the number of deaths at time t.

For Neural Network Autoregression, we left the fitting to the black box and we were provided a model
whose predicted behaviour was mostly good and captured the overall series. However, due to the nature of
this statistical learning technique there is little that can learned about the relationship between number of
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deaths and other series.
Table 5 displays the AIC and MSE values for the main models of interest for this analysis. Because of

how Neural Networks work it does not make much sense to calculate the AIC value so this was omitted.

ARIMA VAR$ 1$ VAR$ 2$ NNAR
AIC 11928.01 52497.02 53802.00 NA

MSE 372.30 430.24 411.99 347.09

Table 5: Evaluation Results Across all Models

In the future, there are several things that might be of interest for further analysis. For example, utilizing
auto.arima() to explore other parameters for the nnetar, gathering other influential series that might have
a relation with our response variable, such as precipitation, or number of weather related incidents, . . . and
re-examining our work with decomposed components of these series.
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5 Appendix

Preliminary Setup

# Load packages

pkgs <- c('xtable', 'astsa', 'vars', 'foreign', 'forecast',

'knitr', 'lubridate', 'dplyr')

lapply(pkgs, library, character.only=T)

# Load data

### Custom color palette

cols <- c('#000000', '#999999', '#E69F00', '#56B4E9', '#009E73',

'#FF0000', '#F0E442', '#0072B2', '#D55E00', '#CC79A7')

### Dataset

df <- read.dta('./data/ije-2012-10-0989-File003.dta')

colnames(df) <- c('Date', 'Ozone', 'Temperature', 'Relative Humidity', 'Num Deaths')

# Combine the series into a ts object with appropriate time series labeling

ts_vars <- ts(df[,2:5], start=c(2002, 1), frequency=365.25)

# Cache chunk options

opts_chunk$set(cache=T, autodep=T, cache.comments=F)

source('./fxns.R')

Introduction

# Create a sequence of numbers

tab <- t(apply(ts_vars, 2, summary))

xt <- xtable(tab, label='tab:data_summary',

caption='Summary Statistics for Individual Time Series')

print(xt)

Method

# Plotting overall time series

plot.ts(ts_vars, main = "")

# Determining seasonality component

seasonal = lapply(df[,2:5], function(x, vars) {
x <- ts(x, start=c(2002, 1), frequency=365)

temp <- decompose(x)

return(temp$seasonal)

})

# Plotting seasonality componen

plot.ts(do.call(cbind, seasonal), main = '')
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# pairs plot of all series

pairs(ts_vars, cex=0.75, pch=16)

# Variable transformation indicated by EDA

df %<>%

mutate(`Adjusted Temperature` = Temperature - mean(Temperature),

`(Adjusted Temperature)^2` = `Adjusted Temperature`^2,

`Day of Week` = lubridate::wday(Date),

`Day of Month` = lubridate::mday(Date))

ts_vars <- ts(df[,c(2, 6:7, 4:5, 8:9)], start=c(2002, 1), frequency=365.25)

# Formulate training/testing split where testing is 1 year

train <- window(ts_vars, start=c(2002, 1), end=c(2005, 365.25))

test <- window(ts_vars, start=c(2006, 1))

train_trend = time(train); test_trend = time(test)

results <- matrix(0, nrow=2, ncol=4,

dimnames=list(c('AIC', 'MSE'),

c('ARIMA', 'VAR$_1$', 'VAR$_2$', 'NNAR')))

# Fit `lm()` to exogenous variables to determine ARIMA fit

# Fit `lm()` to exogenous variables to determine ARIMA fit

ts_reg_1 = lm(train[,'Num Deaths'] ~ train_trend + train[,'Ozone'] +

train[,'Adjusted Temperature'] + train[,'(Adjusted Temperature)^2'] +

train[,'Relative Humidity'] + train[,'Day of Week'] + train[,'Day of Month'])

# Looking at residuals

plot(resid(ts_reg_1), ylab='Residuals', cex=0.75)

abline(h=0, col='red', lwd=2)

qqnorm(resid(ts_reg_1), main=''); qqline(resid(ts_reg_1))

# Looking at ACF/PACF for model identification

invisible(astsa::acf2(resid(ts_reg_1), 365.25, main=''))

###### Parameter selection

train_var <- train[,c('Ozone', 'Adjusted Temperature', '(Adjusted Temperature)^2',

'Relative Humidity', 'Num Deaths')]

bind <- cbind(trend=train_trend, wday=train[,'Day of Week'], mday=train[,'Day of Month'])

# Calculate Information Criteria for different VAR(p) models with season=NULL

VARselect_res_1 <- VARselect(train_var, season=NULL, exogen=bind, type='none')

# Calculate Information Criteria for different VAR(p) models with season=365

VARselect_res_2 <- VARselect(train_var, season=365, exogen=bind, type='none')

selection <- rbind(VARselect_res_1$selection, VARselect_res_2$selection)
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rownames(selection) <- paste0('season=', c('NULL', '365'))

xt <- xtable(selection, label='tab:var_order',

caption='\\texttt{VARselect()} Order Selection for Different Models')

print(xt, table.placement='H')

Results

Time Series Regression

# Fit `Arima()` to residuals of exogenous variables

bind <- cbind(trend=train_trend, temp=train[,'Adjusted Temperature'],

temp2=train[,'(Adjusted Temperature)^2'], Ozone=train[,'Ozone'],

`Relative Humidity`=train[,'Relative Humidity'], wday=train[,'Day of Week'],

mday=train[,'Day of Month'])

ts_reg_2 = Arima(train[,'Num Deaths'], order=c(2, 0, 8), xreg=bind, optim.control=list(maxit=1000))

# Looking at fitted values

plot(train[,'Num Deaths'], ylab='Number of Deaths')

lines(fitted(ts_reg_2), col='blue')

legend('topright', c('Original Data', 'Fitted Values'), lty=c(1,1), col=c(1,'blue'))

# Looking at residuals over time

plot(resid(ts_reg_2), ylab='Residuals', type='p', cex=0.75)

abline(h=0, col='red', lwd=2)

# Fit `Arima()` to residuals of exogenous variables

ts_reg_3 = auto.arima(train[, 'Num Deaths'], xreg=bind, seasonal=T,

stepwise=F, approximation=F, optim.control=list(maxit=1000))

# Looking at fitted values

plot(train[, 'Num Deaths'], ylab='Number of Deaths')

lines(fitted(ts_reg_3), col='blue')

legend('topright', c('Original Data', 'Fitted Values'), lty=c(1,1), col=c(1,'blue'))

# Looking at residuals over time

plot(resid(ts_reg_3), type='p', cex=0.75, ylab = 'Residuals')

abline(h=0, col='red', lwd=2)

# Looking at normality of residuals

qqnorm(resid(ts_reg_2)); qqline(resid(ts_reg_2))

# Looking at ACF/PACF for white noise

invisible(astsa::acf2(resid(ts_reg_2), 365.25, main=''))

# Looking at normality of residuals

qqnorm(resid(ts_reg_3)); qqline(resid(ts_reg_3))
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# Looking at ACF/PACF for white noise

invisible(acf2(resid(ts_reg_3), 365.25, main=''))

###### Forecasting test data

bind <- cbind(trend=test_trend, temp=test[, 'Adjusted Temperature'],

temp2=test[, '(Adjusted Temperature)^2'], Ozone=test[, 'Ozone'],

`Relative Humidity`=test[,'Relative Humidity'], wday=test[,'Day of Week'],

mday=test[,'Day of Month'])

fcast <- forecast(ts_reg_3, level=95, xreg=bind)

plot(train[, 'Num Deaths'], ylab='Number of Deaths', xlim=c(2002, 2007),

ylim=range(fcast$lower, fcast$upper, ts_vars[, 'Num Deaths']))

lines(test[, 'Num Deaths'], col = 'darkgrey')

lines(fcast$upper, col = 'red', lty = 2)

lines(fcast$mean, col = 'red')

lines(fcast$lower, col = 'red', lty = 2)

legend('topright', c('Training Data', 'Validation Data', 'Point Estimates', '95% CI'),

col=c(1, 'grey', 'red', 'red'), lty=c(1,1,1,2), cex=0.75)

# Display coefficients and standard errors

output <- capture.output(ts_reg_3)

output <- strsplit(output, '( *: )|[ ]{2,}', perl=TRUE)

output <- output[5:10]

output <- cbind(do.call(rbind, output[1:3]), do.call(rbind, output[4:6]))

tab <- apply(output[-1,-c(1,9)], 1, as.numeric)

rownames(tab) <- c('ar 1', 'ma 1', 'intercept', 'Trend', colnames(ts_vars)[c(2:3, 1, 4, 6:7)])

rownames(tab)[6] <- '(Adjusted Temperature)$^2$'

colnames(tab) <- c('Estimate', 'Std. Error')

xt <- xtable(tab, caption='Time Series Estimated Coefficients', label='tab:ts_reg', digits=2)

print(xt, scalebox=1, sanitize.rownames.function = function(x) {x})

# Calculate final results for model

results[,'ARIMA'] <- c(AIC(ts_reg_3), mean((test[,'Num Deaths'] - fcast$mean)^2))

Vector Autoregression

# Determining VAR model based on VARselect_res_1

bind <- cbind(trend=train_trend, wday=train[,'Day of Week'], mday=train[,'Day of Month'])

var_fit_1 <- vars::VAR(train_var, p=min(selection[1,]),

season=NULL, exogen=bind, type='none')

# Display fitted values and original series

ts_fitted <- ts(fitted(var_fit_1), start=c(2002, 1), frequency=365.25)

temp_plot(train_var, other=ts_fitted, other_col='blue', main='')

# Display residuals over time

ts_resid_1 <- ts(resid(var_fit_1), start=c(2002, 1), frequency=365.25)

colnames(ts_resid_1) <- colnames(train_var)
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ts_line <- ts(matrix(0, ncol=ncol(train_var), nrow=nrow(train)), start=c(2002,1), frequency=365.25)

temp_plot(ts_resid_1, other=ts_line, other_col='red', main='')

# Determining VAR model based on VARselect_res_2

var_fit_2 <- vars::VAR(train_var, p=min(selection[2,]),

season=365, exogen=bind, type='none')

# Display fitted values and original series

ts_fitted <- ts(fitted(var_fit_2), start=c(2002, 1), frequency=365.25)

temp_plot(train_var, other=ts_fitted, other_col='blue', main='')

# Display residuals over time

ts_resid_2 <- ts(resid(var_fit_2), start=c(2002, 1), frequency=365.25)

colnames(ts_resid_2) <- colnames(train_var)

ts_line <- ts(matrix(0, ncol=ncol(train_var), nrow=nrow(train)), start=c(2002,1), frequency=365.25)

temp_plot(ts_resid_2, other=ts_line, other_col='red', main='')

# Display ACF/CCF plots

acf(ts_resid_1, lag.max=365.25, mar=c(2.85, 2.5, 2, 0.25))

acf(ts_resid_2, lag.max=365.25, mar=c(2.85, 2.5, 2, 0.25))

# Forecasting VAR(season=NULL)

bind <- cbind(trend=test_trend, wday=test[,'Day of Week'], mday=test[,'Day of Month'])

fcast <- predict(var_fit_1, n.ahead=nrow(test), dumvar=bind)

names(fcast$fcst) <- colnames(train_var)

colnames(fcast$endog) <- colnames(train_var)

plot(train[, 'Num Deaths'], ylab='Number of Deaths', xlim = c(2002, 2007),

ylim=range(fcast$fcst$`Num Deaths`[, 1:3], ts_vars[, 'Num Deaths']))

lines(test[, 'Num Deaths'], col='darkgrey')

fcast$fcst$`Num Deaths` <- ts(fcast$fcst$`Num Deaths`, start=c(2006, 1), frequency=365.25)

lines(fcast$fcst$`Num Deaths`[,2], col='red', lty=2)

lines(fcast$fcst$`Num Deaths`[,1], col='red')

lines(fcast$fcst$`Num Deaths`[,3], col='red', lty=2)

legend('topright', c('Training Data', 'Validation Data', 'Point Estimates', '95% CI'),

col=c(1, 'grey', 'red', 'red'), lty=c(1,1,1,2), cex=0.75)

# Calculate final results for var_fit_1

results[, 2] <- c(AIC(var_fit_1), mean((test[,'Num Deaths'] - fcast$fcst$`Num Deaths`[,'fcst'])^2))

# Forecasting VAR(season=365)

fcast <- predict(var_fit_2, n.ahead=nrow(test), dumvar=bind)

names(fcast$fcst) <- colnames(train_var)

colnames(fcast$endog) <- colnames(train_var)

plot(train[, 'Num Deaths'], ylab='Number of Deaths', xlim = c(2002, 2007),

ylim=range(fcast$fcst$`Num Deaths`[, 1:3], ts_vars[, 'Num Deaths']))
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lines(test[, 'Num Deaths'], col='darkgrey')

fcast$fcst$`Num Deaths` <- ts(fcast$fcst$`Num Deaths`, start=c(2006, 1), frequency=365.25)

lines(fcast$fcst$`Num Deaths`[,2], col='red', lty=2)

lines(fcast$fcst$`Num Deaths`[,1], col='red')

lines(fcast$fcst$`Num Deaths`[,3], col='red', lty=2)

legend('topright', c('Training Data', 'Validation Data', 'Point Estimates', '95% CI'),

col=c(1, 'grey', 'red', 'red'), lty=c(1,1,1,2), cex=0.75)

# Calculate final results for var_fit_2

results[, 3] <- c(AIC(var_fit_2), mean((test[,'Num Deaths'] - fcast$fcst$`Num Deaths`[,'fcst'])^2))

# Display coefficients for VAR_1

tab <- coef(var_fit_1)$`Num.Deaths`

temp_names <- colnames(train_var)

temp_names[3] <- "(Adjusted Temperature)$^2$"

rownames(tab) <- c(paste0(rep(temp_names, 3), ' lag ',

rep(1:3, each=ncol(train_var))), 'Trend', 'Day of Week', 'Day of Month')

colnames(tab)[4] <- 'Pr($>|t|$)'

xt <- xtable(tab, digits=c(0, 3, 3, 3, -2), label='tab:var_coef',

caption='\\texttt{Num Deaths} Coefficients from VAR(3)')

print(xt, scalebox=0.75, sanitize.text.function=function(x) {x})

Neural Network Autoregression

# Fit a NNAR model

bind <- cbind(trend=train_trend, temp=train[, 'Adjusted Temperature'],

temp2=train[, '(Adjusted Temperature)^2'], `Ozone`=train[, 'Ozone'],

`Relative Humidity`=train[, 'Relative Humidity'],

wday=train[,'Day of Week'], mday=train[,'Day of Month'])

attach(as.data.frame(train))

fit <- nnetar(`Num Deaths`, xreg=bind)

detach(as.data.frame(train))

# Plot fitted values vs training data

plot(train[,'Num Deaths'], ylab='Number of Deaths')

lines(ts(fitted(fit), start=c(2002, 1), frequency=365.25), col='blue')

legend('topright', c('Original Data', 'Fitted Values'), lty=c(1,1), col=c(1,'blue'))

# Plot residuals over time

plot(resid(fit), ylab='Residuals')

abline(h=0, col='red', lwd=2)

# Plot QQ plot

qqnorm(resid(fit)); qqline(resid(fit))

# Plot ACF/PACF

invisible(acf2(resid(fit), 365.25, main=''))
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bind <- cbind(trend=test_trend, temp=test[, 'Adjusted Temperature'],

temp2=test[, '(Adjusted Temperature)^2'], `Ozone`=test[, 'Ozone'],

`Relative Humidity`=test[, 'Relative Humidity'],

wday=test[,'Day of Week'], mday=test[,'Day of Month'])

fcast <- forecast(fit, level=95, xreg=bind, PI=T)

fcast$x <- ts(fcast$x, start=c(2002, 1), frequency=365.25)

fcast$mean = ts(fcast$mean, start=c(2006, 1), frequency=365.25)

fcast$upper = ts(fcast$upper, start=c(2006, 1), frequency=365.25)

fcast$lower = ts(fcast$lower, start=c(2006, 1), frequency=365.25)

plot(train[,'Num Deaths'], xlim = c(2002, 2007), ylab='Number of Deaths')

lines(test[,'Num Deaths'], col = 'darkgrey')

lines(fcast$upper, col = 'red', lty = 2)

lines(fcast$mean, col = 'red')

lines(fcast$lower, col = 'red', lty = 2)

legend('topright', c('Training Data', 'Validation Data', 'Point Estimates', '95% CI'),

col=c(1, 'grey', 'red', 'red'), lty=c(1,1,1,2), cex=0.75)

results[, 'NNAR'] <- c(NA, mean((fcast$mean - test[,'Num Deaths'])^2))

# Calculate simulations

trend <- time(ts_vars)

bind <- cbind(trend, temp=ts_vars[, 'Adjusted Temperature'],

temp2=ts_vars[, '(Adjusted Temperature)^2'], `Ozone`=ts_vars[, 'Ozone'],

`Relative Humidity`=ts_vars[, 'Relative Humidity'],

wday=ts_vars[,'Day of Week'], mday=ts_vars[,'Day of Month'])

sims <- replicate(10, simulate(fit, nsim=nrow(ts_vars), xreg=bind))

plot(ts_vars[,'Num Deaths'], ylab='Number of Deaths')

ts.plot(sims, col=1:10, ylab='Number of Deaths')

Discussion

xt <- xtable(results, label='tab:results',

caption='Evaluation Results Across all Models')

print(xt, NA.string='NA', sanitize.rownames.function=function(x) {x})
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